$$f(x) = \frac{\sqrt{x^2 + 12} - 2}{x^2}$$
 determine the following.
1) $f(2) = \frac{2}{4} - \frac{1}{2}$ 2) $f(0) = \frac{\sqrt{12 - 2}}{\sqrt{2}} = \emptyset$

d out what is happening to the graph of a function when we cannot evaluate it at a veruse a _______.

id of asking what does f(x) equal when x is a certain value,
we ask what does f(x) approach as x approaches a certain value.

$$\lim_{x \to a} f(x) = L$$

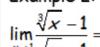
One Sided Limits

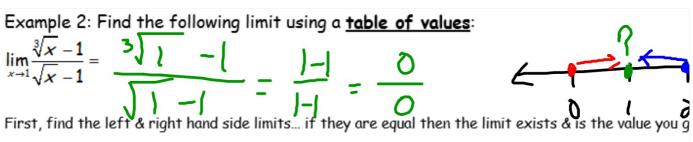
Left Hand Side:
$$\lim_{x \to a} f(x)$$

Left Hand Side:
$$\lim_{x \to a} f(x)$$
 Right Hand Side: $\lim_{x \to a} f(x)$

For a limit to exist:

The left hand side must equal the right hand





$$\lim_{x\to\Gamma}\frac{\sqrt[3]{x}-1}{\sqrt[]{x}-1}=$$

×	δ	.5	.9	.99
f(x)	1	2044	16725	-667

$$\lim_{x\to 1^+} \frac{\sqrt[3]{x} - 1}{\sqrt[]{x} - 1} =$$

	15mm	11,85931		
X	9	1.5		1.0
f(x)	675	1439	.6613	.666

You can also find limits by looking at the graph of a function. Given the graph of f(x), find the following limits if they exist.

a)
$$\lim_{x\to 1^-} f(x) =$$

b)
$$\lim_{x \to 1^+} f(x) = \frac{1}{2}$$

c)
$$\lim_{x\to 1} f(x) = \sum_{x\to 1} f(x)$$

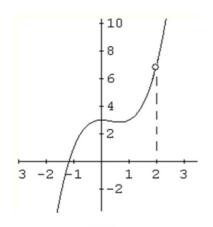
$$d) \lim_{x \to 4^-} f(x) = \bigcup$$

e)
$$\lim_{x\to 4^+} f(x) = \bigcup_{x\to 4$$

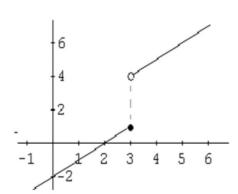
f)
$$\lim_{x\to 4} f(x) = \bigcup_{x\to 4} f(x)$$

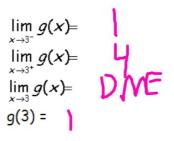
g)
$$f(4) = 3$$

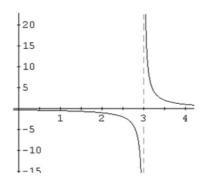




$$\lim_{\substack{x \to 2^{-} \\ \lim_{x \to 2^{+}} f(x) = 7 \\ \lim_{x \to 2^{+}} f(x) = 7 \\ f(2) = \text{DNE}}$$







$$\lim_{\substack{x \to 3^- \\ \lim_{x \to 3^+} h(x) = \\ \lim_{x \to 3} h(x) = \\ h(3) = } h(x) = 0$$

If a graph is continuous you can simply plug in the value to find the limit.

$$1) \lim_{x\to 2} 2x + 3x =$$

2)
$$\lim_{x\to -3} x^2 - 5 =$$

3)
$$\lim_{\theta \to \pi} \sin \theta =$$

4)
$$\lim_{x\to 4} \frac{3}{x+2}$$

5)
$$\lim_{x \to \frac{1}{2}} (3x^2 - 2) = 7$$

6)
$$\lim_{\theta \to \frac{5\pi}{4}} \tan \theta =$$

The indeterminate form:

When direct substitution gives you $\frac{0}{0}$, simplify the function algebraically and substitution again.

Algebraic methods for finding limits:

- 1. Direct substitution
- 2. Simplify expressions

7)
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3} =$$

8)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1} =$$

8)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1} =$$
 9) $\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 + 8x - 48} =$

